

Course Documentation Outline

School of Business, Biosciences and Justice Studies

SECTION I

- 1. Program: Chemical
- 2. Course Name: Analytical Chemistry 2
- 3. Course Code: CHEM 2005
- 4. Credit Value: 4 Course Hours: 60

Class	Lab	Field	Other	Total
30	45			75

5. Prerequisites/Co-requisites/Equivalent Courses

PR/CO/EQ		Course Code	Title	
PR		CHEM2000	Analytical Chemistry 1	
6.	Faculty: Elinor Brunet Date: Jar		12, 2011	Effective Date: Jan 13, 2011
7.	Dean/Chair Approval: Jim Whiteway			Date: Jan 2011
9.	Revision Number:	Date:		Effective Date:

10: Notes

Section II

11. Calendar Description:

Specific types of qualitative analysis and associated calculations are stressed. Electrochemistry and its associated calculations (Nernst Equation), as well as basic spectroscopy are discussed.

12. **Provincial Context:**

This course meets the following Ministry of Education and Training requirements:

a). Prior Learning Assessment (PLA)

Students may apply to receive credit by demonstrating achievement of the course learning outcomes through previous life and work experiences.

This course is eligible for challenge through the following method(s) indicated by *

Challenge Exam	Portfolio	Interview	Other	Not Eligible
*	*	*		

PLAR Contact:

13. Employability Skills emphasized in this course

	communication - written		communication - visual		communication - oral
*	analytical		creative thinking	*	decision making
*	interpersonal	*	numeracy	*	organizational
*	problem solving	*	technological		other (specify)

14. Required Texts, Materials, Resources or Technical Materials Required:

Lab manual produced at the college, lab coat and safety eyewear (CSA approved) with colourless lenses, as well as a scientific calculator capable of linear regression. A formal textbook is not required for this course.

15. Evaluation Plan (Passing Grade is 60%)

Students will demonstrate learning in the following ways:

Assignment Description	Evaluation Methodology	Due Date
Assignments, quizzes and midterm test	35%	On going
Lab reports	30%	Weekly
Final Test	35%	Apr 2011

16. **Other**

Policy for missed tests/work and submission of assignments:

Students are expected to make every reasonable effort not to miss tests and to submit all assigned work on time. Students must advise the instructor **in advance** if they are unable to meet scheduled deadlines, **otherwise late assignments will not be accepted for evaluation and a grade of zero will be assigned**. Every effort will be made to accommodate students unable to meet specified deadlines as a result of extenuating circumstances; however, the instructor reserves the right to refuse late assignments and to refuse to reschedule assessments.

The total of the marks for the quizzes, midterm, assignments, lab reports and final test must be equal to or **greater than 60%** to obtain a pass in this course

The midterm test will cover material from the beginning of the semester to that point. The final test will cover material from the entire semester. The style of the questions will be exactly the same as those contained in the assignments and quizzes.

All labs must be performed, and the associated report for each lab must be submitted for grading. The format to be used for the lab report will be discussed in the lab period. The lab reports must be typed. Only one lab may be 'made up' during the scheduled make up period at the end of the semester

Loyalist College has a Violence Prevention policy:

- All College members have a responsibility to foster a climate of respect and safety, free from violent behaviour and harassment.
- Violence (e.g. physical violence, threatening actions or harassment) is not, in any way, acceptable behaviour.
- Weapons or replicas of weapons are not permitted on Loyalist College property.
- Unacceptable behaviour will result in disciplinary action or appropriate sanctions.
- More information can be found in the "Student Manual and Guide Rights & Responsibilities".

Contact Information for Elinor Brunet:

Office: 2L25 a Work Phone #: 613-969-1913, ext 2290 Home Phone #: 613-968-8695 E-mail: ebrunet@loyalistc.on.ca

Section III

17. Curriculum Delivery, Learning Plan and Learning Outcomes:

Course Components/Content	Related Learning Outcomes	Learning Activities/Resources
Review of Selected Activities from Analytical Chemistry 1	The student will be able to: - express the results of all calculations with the correct number of significant figures or decimal points - display an appreciation for the difference between the accuracy with which they have determined the concentration of their unknown, and the precision displayed during their titrations (or other measurements) - perform conversions within the metric system - perform the calculations required to accurately prepare solutions by dissolution or dilution using the appropriate glassware and balances regardless of whether the concentration units are mol/L, mg/L, % w/w, % w/v, % v/v or eq/L. - review the concept of standardizing a titrant using a standard solution	Curriculum objectives will be achieved through a combination of the following teaching strategies: 1. Lecture 2. Laboratory activities (guided and discovery) 3. Cooperative study 4. Independent study (i.e. required readings and exercises) Lab: Solution Preparation Sodium Thiosulfate
Theory of REDOX Reactions	 Basic definitions, terms and concepts; electrodes and electrode potentials Nernst equation Combining half reactions to form a complete reaction 	Lab: Electrodeposition of Copper
Redox Equations (Review)	 calculate oxidation numbers of elements in a compound or a polyatomic ion balance simple redox equations, identifying the ½ reactions and oxidizing or reducing agents balance redox equations in an acidic or alkaline environment 	

Redox Titrations	 Identify procedures employing an oxidizing titrant Identify procedures employing a reducing titrant Plot potentiometric titration curves, their first derivative curves and second derivative curves Determine the equivalence point of the titration from the curves visually and mathematically Discuss the construction and use of some common electrodes: Standard Hydrogen, Calomel, Glass Specific Ion, Platinum 	Lab: Potentiometric Titration of Iron
Atomic Absorption	 apply their understanding of the basic theory behind Atomic Absorption prepare standards containing the analyte prepare a sample of their unknown perform start up, and calibration procedures, obtain absorbance measurements on the standards and unknown, perform shut down procedures 	Labs: Copper by Furnace AA Calcium by Flame AA
Beer's Law One Component Mixture	Use linear regression on the results of a Beer's Law determination (absorbance measurements vs. concentration of standards) to calculate the concentration of an unknown	Labs: Acetone Iron Colorimetric

Equilibrium	- display competence in writing equilibrium constant expressions and given enough data manipulating it to calculate Keg	Lab: Organic Acid
	- be able to examine a reaction equation and deduce which equilibrium constant is appropriate (K_a , K_b , K_w , K_{sp})	
	- Given enough data, find the solubility in water of a slightly soluble salt	
	 recognize that a particular solvent contains a "common ion" with respect to a slightly soluble salt and adjust the calculation for solubility accordingly 	
	- express the concentrations of the ions as the -log molar concentration or 'p' function	
	 from a pH titration plot determine the pKa (s) of organic acids accurately enough to be able to identify the acid when comparisons are made to literature values 	
Iodine Numbers	- review the concept of unsaturation in organic compounds	Lab: lodine Numbers
Chlorine	- investigate the set-up, standardization and use of a pre-programmed colorimeter (Hach DR 2000) to determine chlorine in a tap water sample using commercially available pre-packaged complexing agents.	Lab: Chlorine
pH Neutralization Reactions	 utilize an acid/base reaction to confirm the concentration of antacid present in commercially available antacid tablets 	Lab: Antacid Tablet Titration
Conductivity	- accurately prepare KCI standards	Lab:
	- use a conductivity meter to measure the conductivity of the KCI standards, deionized water (and appreciate why it has a measurable conductivity) and a solution of unknown KCI concentration	Conductivity
	 plot the conductivity vs. concentration of the standards on log-log paper 	
	- determine the concentration of KCI in the unknown from the plot	